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The usefulness (Lubkin, 1976; Lubkin and Lubkin, 1979) of B-plexes, an 
extension of Dirac's familiar observable (Dirac, 1947), is illustrated in a computa- 
tion of all nondestructive tests over a system of finite ket-space dimension n. 
These are tests whose B outcomes are proportional to corresponding pure final 
states. The unitary motions of the system and a B-dimensional register, which 
effect such tests, depend very simply on n vectors from a frame in B-space. Case 
B > n is not empty, and so presents nondestructive testing with nonorthogonal 
final states. The step where reduction of the wave packet happens, equivalently, 
computation of an Everett relative state, is given in an Appendix. 

1. I N T R O D U C T I O N  

As nondes t ruc t iveness  is p r o m i n e n t  in von N e u m a n n ' s  bas ic  expos i t i on  
o f  quan ta l  m e a s u r e m e n t  [von N e u m a n n  (1955), r ep r in t ed  in par t ,  and  with 
an ed i to r i a l  no te  on  p. 550, in W h e e l e r  and  Z u r e k  (1983)],  I beg in  with von 

N e u m a n n  much  in m i n d  [as in L u b k i n  (1979a)] .  
The  no t ion  tha t  m e a s u r e m e n t  beg ins  wi th  a sys tem in state xi and  an 

ins t rument  in a s t a n d a r d i z e d  s tate  o f  r ead iness  Y0 and  ends  wi th  the  sys tem 
still in the  same state  xi bu t  wi th  the  ins t rument  in some  state y~ s igni fy ing 
tha t  the  sys tem's  " i - n e s s "  has  been  r e c o r d e d  (Whee le r  and  Zurek ,  1983, 
b o t t o m  line o f  p. 642) is a heur is t ic  b r idge  be tween  the c lass ical  conven t ion  
tha t  a sys tem can be  obse rved  wi thou t  d i s tu rb ing  its s tate ,  and  the s i tua t ion  
in m o d e r n  phys ics ,  where  this  n o n d i s t u r b a n c e  is l imi ted  to the  e igens ta tes  
o f  " t he  o b s e r v a b l e "  o f  the  measu remen t .  The  " n o n d e s t r u c t i v e n e s s "  tha t  I 
will  def ine  and  use here  subjects  this  n o n d i s t u r b a n c e  to analys is  in a 
con t ro l l ed  context ,  a n d  also ex tends  to states which  need  no t  be  o r thogona l .  

Tha t  " c o n t r o l l e d  con tex t "  is a lso  ma in ly  von N e u m a n n ' s :  The  sys tem 
sys and  ano the r  ent i ty ,  the  in s t rumen t  or  its most  essent ia l  r epresen ta t ive  
par t ,  wh ich  I call  the  regis ter  reg, are  dea l t  with toge the r  as a ket  in the  
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946 Lubkin 

tensor-product Hilbert space Hsrs | Hree,. This ket is assumed to move in 
time according to a linear and indeed unitary Schr6dinger equation. 

Von Neumann's  simple schema 

Xiyo ~ xiyi (1) 

for evolution in time captures the philosophy of nondisturbance above. The 
x~ are the nondisturbed "eigenstates of  the measurement's observable." 
The linearity assumed for the motion then extends (1) to the evolution of 
more general states 

x = Z  aixi 
i 

as follows: 

Y. aiXlyo-~ ~ aixiYi (2) 
i i 

The output ~i ctix~y~ of  the unitary law of motion no longer specifies a 
particular outcome of  the measurement, but, as discussed very widely (e.g., 
Everett, 1957; Lubkin, 1979a), corresponds to sys winding up in state x~ 
and reg recording that by winding up in state y~ with probability It~it 2. Since 
the original state x of  sys was Y~i a~x~ and not any single one of  the x~ (for 
nontrivial coefficients), we find in practice that the state of sys has been 
subjected to the disturbance of change from x to xi if reg indicates the ith 
outcome. So as we learn the rudiments of quantum mechanics, we are thus 
surprised at the self-limiting quality of nondisturbing measurement: The 
very assumption of  nondisturbance for a set of  orthogonal x~ imposes 
disturbance rather than nondisturbance upon other states x! 

Even so, it is convenient that the ith answer yi registered on the 
instrument disciplines the state of  sys to be simply x~ at the end of  the 
experiment: it is convenient as a method for preparing states for subsequent 
experiments. This is of course the usual formal generalization of  the way 
a polarizer imposes its orientation upon a photon. So, despite the disturbance 
of  the initial state that would falsify calling the situation "nondisturbing," 
I yet wish to call the situation "nondestructive":  The measurement told us 
not only the response of reg to some interaction with sys, but has also 
disciplined sys, consistent with that report, for the needs of a subsequent 
experiment. What is not destroyed is the value of the documentation. 

That is, the conformity of  "nondestructiveness" is between reg finally 
and sys finally; whereas the conformity of  "nondis turbance" is between sys 
initially and sys finally. 

Plan. It is my purpose to look at the unitary matrix U which effects 
the measurement, i.e., at the joint motion U of "sys&reg," to see which U 
actually behave nondestructively; to do so in my context of  "B-plexes"  for 
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measurement  (Lubkin 1974a, 1979b); and to answer some questions about  
nondestructiveness: 2 

Q: Is nondestructiveness just a pleasant  fable which perhaps  is not sus- 
tained by any actual unitary mot ion U? 

A: No, nondestructive motions U indeed do exist. 
Q: Must discipline of  the final state by the outcome written on reg be 

indelibly associated with or thogonal  final states? 
A: Surprisingly, no. Here is where B-plexes show the way. 
Q: Am I contradicting Wigner 's  lemma: that states which inevitably lead 

a certain test to different outcomes must be orthogonal  in a theory 
where motion is unitary? (Wigner, 1952, footnote 2, p. 102.) 

A: No contradiction. Wigner 's  states are initial; the ones here are final. 

2. B-PLEX, FINAL STATE, ACCEPTOR,  
P O R C U P I N E ,  N O N D E S T R U C T I V E  

In quantum mechanics done properly,  one has states initially, but only 
outcomes of  tests, not states, finally. Here I nevertheless explore a notion 
of  final state. 

My space Hsy s of  kets for sys will have n complex dimensions, n finite. 

B-Plex,  Acceptor  (Lubkin, 1974a). A test with B mutually exclusive 
exhaustive outcomes ("bins")  is represented by a list or "B-p lex"  a of  B 
nonnegative n x n Hermitian matrices aK, K = 1 , . . . ,  B, called "acceptors ,"  
with 

aK = I n  (3) 
K 

where 1 n denotes the n x n unit matrix. 

Conventions. Lower-case indices shall run over 1 , . . . ,  n; Upper-case 
indices run over 1 , . . . ,  B. Thus, ln~ = 10 and 1BcD = lCD are Kronecker  
deltas. 

An Einstein convention of omitting obvious instructions for summation 
will be used. But an index which appears  on both sides of  a relationship 
is by default free, not a dummy of  summation,  even if it appears  repeatedly 
within a side. Explicit " ~ "  is on occasion used simply for emphasis.  

Porcupine. Let each aK have rank 1; I call such a test-of-rank-l 's  a 
"porcup ine"  (as it has "thin quills"!). These aK may already suggest pure 

2B-plexes will soon be properly defined. At first, "B-plex"  would merely replace an observable 
by the list of  its eigenspaces, and would be at this level just Neumann's  "resolution of  
identity," but then B-plexes go beyond that, to generalize the traditional Hermitian or normal 
observable; hence B-plexes may in this extension be called "non-Dirac observables." The 
definition to be given skips this history, and goes right to the quite simple extended notion. 
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" f i n a l  s t a t e s , "  b u t  n o t e  tha t  t h e y  a re  n e i t h e r  i n d i v i d u a l l y  n o r m a l i z e d  n o r  

m u t u a l l y  o r t h o g o n a l .  ( B o t h  c o n d i t i o n s  do  h o l d - - b u t  o n l y  i f  B = n. 3) 

Le t  t h e  m e a s u r e m e n t  be  e f f ec t ed  by  the  u n i t a r y  p r o p a g a t i o n  u n d e r  U, 

o f  t h e  n - d i m e n s i o n a l  s y s t e m  sys a n d  a B - d i m e n s i o n a l  r eg i s t e r  reg, p u t  

t o g e t h e r  as  sys&reg, as usua l ,  in  an  n B - d i m e n s i o n a l  t e n s o r - p r o d u c t  ke t  

s p a c e  Hsys ~ Hreg. T h u s ,  t he  s ize o f  U is nB x nn. 4 

Definition o f  Nondestructive. A " n o n d e s t r u c t i v e  t e s t "  m u s t  a r r a n g e  to  

h a v e  t h e  s ta te  o f  sys a f t e r  t h e  K t h  o u t c o m e ,  p r o p o r t i o n a l  to  aK:  I t  is th is  

i m i t a t i o n  o f  t h e  t es t ' s  a c c e p t o r  by  t h e  s y s t e m  i t se l f  at  a l a te  t i m e - - s p e c i f i c a l l y  

b y  sys's e v o l v e d  d e n s i t y  m a t r i x - - t h a t  is m y  w a y  h e r e  o f  r e s c u i n g  t h e  c o m m o n  

n o t i o n  o f  " f i n a l  s t a t e . "  

3. C L A I M  A N D  F U R T H E R  M O T I V A T I O N  

Claim. I wi l l  s h o w  t h a t  fo r  e v e r y  p o r c u p i n e ,  t he r e  i n d e e d  ex is t  U ' s  

w h i c h  effect  it n o n d e s t r u c t i v e l y .  I f  B = n, we  h a v e  a D i r a c  o b s e r v a b l e  a n d  

the  s t a n d a r d  su rv iva l  o f  t he  s ta te  in v o n  N e u m a n n ' s  a n d  in t he  C o p e n h a g e n  

v i e w p o i n t ,  m a d e  e x p l i c i t  by  s p e c i f y i n g  w h i c h  m o t i o n s  o f  m e a s u r e m e n t  U 

i n d e e d  ef fec t  s u c h  surv iva l .  I f  B > n, we  h a v e  an  e x t e n s i o n  o f  th is  " s u r v i v a l  

o f  t he  s t a t e "  to  m o r e  g e n e r a l  tes ts ,  d e sp i t e  t he  n o n o r t h o g o n a l i t y  o f  t h o s e  

f inal  s t a t e s )  

Practicality of Empirically Destructive Quantum Mechanics 

I t  is p o s s i b l e  to  c o n c e i v e  o f  t h e  c o n t a c t  b e t w e e n  q u a n t u m  m e c h a n i c a l  

t h e o r y  a n d  e x p e r i m e n t  as a m e r e  f i t t ing o f  e m p i r i c a l  p r o b a b i l i t i e s  by  d e n s i t y  

3proof: Case B <  n: Empty. See the Corollary after (18). Case B >  n: The B n-vectors i~ vK~ 
or briefly vK represefiting the a K are more numerous than the dimension n, hence they cannot 
be linearly independent, and afortiori are not orthogonal. Case B = n: )~K aK = In shows 
each ar  to be less than In, whence the vector vK of a K has length bounded above by 1. If 
any such length is actually less than 1, then, however, trace ~K aK falls short of B = n, yet 
also must equal trace In, namely, n; from which contradiction the v K are necessarily all unit 
vectors. Finally, to show that the vK are orthogonal: Project all quantities on the orthogonal 
complement of one of the v's, e.g., of vl, to get n -  1 possibly shortened other vectors v' 
which correspond to null or rank-1 a~:. The new a~ is zero. The n - 1 other ak must therefore 
sum, without the help of a~, to projection on the ( n -  1)-space orthogonal to vi, which has 
trace n - 1. The trace argument before, in dimension n, can now be repeated in dimension 
n - 1, to disallow any shortening in the projections, hence no part parallel to Vl was actually 
cast away: The other VK were indeed orthogonal to vl; QED. 

4For a construction in support of the convention that any unitary matrix correspond to a 
possible motion, see Lubkin (1974b). 

5Why I use porcupines: The purpose of nondestructiveness is to have a test act as a filter, to 
spit out particular states as final states. Then having these states appear most sharply defined, 
as pure states, is a virtue. Furthermore, any test can in principle be refined to a porcupine, 
by adding more bins. Also rank 1 is technically convenient. 
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matrices for the (initial) states, and by B-plexes of  acceptors for tests with 
B possible mutually exclusive outcomes. I call this dry outlook the "Matrix 
Format"  (MF) (Lubkin, 1974a). 

There is no need in MF for any notion of final state: You begin with 
a state, but end with an outcome of  a test, not with a state. If  then you wish 
to do another experiment, you make a brand new state. How you make 
states, how you perform tests on them, is part of  everyday life, and is not 
necessarily comprehended within a quantal model. 

It may be clarifying indeed to set for th  MF, albeit tersely: 

MF. The probability p(I, J, K )  that state I followed by test J yields 
outcome K is found directly, if laboriously, by making many trials of  
preparing state /, then applying test J, and cumulatively recording which 
bin K catches the outcome. 6 Comparison to " theory"  is by cumbersomely 
adjusting the I th  state matrix pl and the J th  test's B-plex (aj1 . . .  ajs) of  
acceptor matrices a jr  (whose typical qrth matrix element would be ajKqr) 
so as to best fit 

p (/, J, K ) = trace P1 ajK (4) 

If  the size n x n of  all these matrices is kept small, there may easily be 
enough data {p(I, J, K ) )  to freeze them--al l  the p's and all the a ' s - -u p  to 
an overall unitary conjugation. 

Both the states I and the tests J are called into being by ordinary 
human effort. So quantum mechanics is, as it were, immersed in a sea of  
everyday affairs. No quantally produced final state is called for to initiate 
a new trial of  an experiment; rather, one follows some blueprints to prepare 
" s t a t e / , "  etc. This is in general conformity with Bohr's dictum that quantal 
experiments are initiated and terminated "classically," except that not 
even classical mechanics need play a part in the laboratory, a clarification 
offered by Schrrdinger in 1935 (Moore, i989, p. 313) and by Weyl (1949, 
Appendix C). 

This insularity is well known, and it is convenient for carrying out 
particular projects: each project has its own states, tests, and experiments. 
There need be no universe to cut up into those separate experiments. 

Is quantum mechanics then incomplete in its need for this sustaining 
world of  everyday affairs? Is the language of Dirac's kets and bras (or 
acceptors) as dependent  perhaps in principle upon the language of ordinary 
speech and experience? Or are quantal "explanations" for numerous details 

6The rule that capitalized indices run over 1,..., B is evidently inapplicable to I and J here. 
Also, the number of bins possessed by test J may vary from test to test, hence B here should 
really be J-tagged: BJ instead of B; this is not done, to avoid clutter. Similarly, "state I" 
abbreviates "the state bearing number or tag I in a catalogue" (e.g., Giles, 1976). 
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of ordinary experience a sufficient web for us to be justified in feeling that 
we nevertheless live in a universe that is some Laplacian though quantal 
machine? 

Need Nevertheless for an Ongoing State 

Perhaps a notion of final state, that is, a(n initial) state for "the next 
experiment," related in some simple way to the outcome of an (earlier) 
experiment, while superfluous in the conciseness of  MF, may yet guide us 
to a scientific grasp of  this shell of  everyday affairs within which the quantal 
experiments seem to be housed. Perhaps "final state" can help to link 
quantum mechanics to an ongoing "I- t ime" (Einstein, 1953, esp. p. 3) in 
dealing with reality and consciousness. 

That is, how do Bohr's individual experiments link up into some sort 
of  world? 

I should note that von Neumann (1955) presents as the first of his "two 
fundamentally different types of  interventions" (Wheeler and Zurek, 1983, 
p. 553) an alteration of  his (initial) density matrix conceived of  as represent- 
ing an ensemble of physical systems, due to a quantal measurement associ- 
ated with a Hermitian observable. Von Neumann's  ensemble after measure- 
ment throws together all instances of  outcomes; he does not sort out 
subensembles according to the outcome K. Hence, yon Neumann's  ensemble 
after measurement, strangely, represents the result of  a measurement relative 
to an observer who has not yet learned the outcome (not so strange: a deft 
avoidance by Neumann of "reduction of the wave packe t" ) - -and  for the 
story of  how the entropy attending this evident lack of  information yet 
survives as entropy of  measurement even after the outcome is known, see 
Lubkin (1987): the loss of information comes about when the previous 
contents of the register on which the answer is written are erased. I have 
since learned that Landauer (1961) and others (Left and Rex, 1990) have 
dealt extensively with the entropy of  erasure. As I may otherwise seem to 
have forgotten erasure here, let me note that the erasure took place early, 
when reg was preset to state el (see below). 

Von Neumann (1955) thus features a final state prominently, while 
nevertheless leaving much unsaid, so that I have felt it best to make a new 
business of  it here. 

4. LINK BETWEEN ACCEPTORS AND THE M O T I O N  

a~j,,, for a General Acceptor, in Terms of U: An Old "onto" Theorem. 
Aside on B-plex As "Microscope" 

In Lubkin (1974a, b), I showed that to any B-plectic list of matrices a 
there corresponds an actual test with B outcomes whose B-plex is a. As 
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the paradigm of that paper  is also the workhorse here, it will be well to 
review it; indeed, the model here is a slight extension of  that. 

The system starts in state p, and the register starts in its preset state 
el, the first 7 of  a list et(, K = 1 , . . . ,  B, of  projections on an or thonormal  
basis let(), K = 1 , . . . ,  B, of  B-dimensional  H, eg. Thus, et( = [et()(et([. 

Then, general motion U ensues. 
Finally, reg is subjected to a traditional and nondegenerate Dirac 

observable e', whose B mutually orthogonal eigenprojections are the e~,, 
K = 1 , . . . ,  B, with eigenkets [e%). Thus, e~ = te~)(e~:[. The expansion 

l e~)  = ct(LleL) (5) 

defines a unitary matrix c of  coefficients cKr relating the two bases. In 
Lubkin (1974a), all B-plexes were already found without the need for such 
a rotation c, but as I am here aiming at the most general nB x nB motion 
U consistent with nondestructiveness, I must now avoid that specialization. 

In the context of  the larger space Hsys(~Hreg , the resolution of  the final 
observable is instead in terms of  the fattened projections E ~  = ln |  

Thus, the probabil i ty of  outcome K is 

Trace Up | ex U~JE~ (6) 

Capitalized "Trace"  here refers to all labels, i.e., it is of  an nB x nB matrix. 
To determine acceptors aK for sys itself, this probabili ty is equated to 

trace p at( (7) 

which is a computat ion with smaller, n • n matrices only. In components,  
and with 

eKe D =lcK1KD (8) 

diagonal, the equation of (6) and (7) determines the acceptors aK: 

c o n j  T T ~ T c o n j  
CKA UiAj l  I-) iDmlCKD --  aKin j (9) 

Equation (9), in the simplified version where c was a unit matrix, was seen 
in Lubkin (1974a) to map all the unitaries U onto all the B-plexes a. This 
surjectivity established that all B-plexes indeed occur as quantal tests. 

It  may be well to remark here on the virtue of  the B-plex as a 
"microscope":  The original test, in the grammar  of  the larger nB-space of 
sys&reg, had an unexciting B-plex E ' =  (E~ . . .  E'~) of  mutually orthogonal 
projections. It is by reducing this g rammar  down to sys alone that the 

7Register's ket e 1 plays the part of Y0 in the Introduction. 
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general B-plex a = (al �9 .. aa) comes into view. Were B-plexes limited by 
fiat to lists of projections, this "focusing down from sys&reg to sys i tself" 
would be interdicted. 

axj= for a Porcupine As a Condition on U: Imposing Rank 1 

Equation (9) will now be used to determine how U should be restricted 
so as to produce a porcupine for a: Note that (9) is of  the form 

X "'~'~J "" ( lO) Ur KmiUrKi j = a k i n  j 
i 

where 

~o~j ,T (11) UKi  j = C K D  t J i O j l  

Note also the more complete version, 

conj T r 
UiKjL = C~O UiOjL (12) 

in which form it may be said that the ui/~jL constitute an nB x nB unitary 
matrix, which follows directly from the unitarity of  U and of  c. 

Fix K. 
Each (10) term for fixed i in the sum over dummy i is a nonnegative 

multiple of  a 1-dimensional projection. Hence, the sum over i would surpass 
rank 1 (the defining condition of  "porcupine") ,  unless the terms in the sum 
over i are proportional.  The ith term projects (rood normalization) on an 
ith vector whose j th  component  is UKij. So these several vectors must be 
complex-proportional,  i.e., the / j th  u-element is some ith complex multiplier 
r(ow)~ times some single vector's j th  component,  c (o lumn) /  thus, not 
forgetting the bystanding fixed index K, we have 

UKi~ = r(ow)Kic(olumn)Kj (13) 

with of  course no sum on K, and indeed with i,j,  K all free. 8 
As (14), below, is (by inspection) already of form (13), further comment 

on (13) would be moot. 

5. NONDESTRUCTIVENESS 

E'P'E' Conveyance of  Nondestructiveness for a Porcupine to U 

I now must do a reduction of  the wave packet, or pass to an Everett 
relative state (Everett, 1957), in order to capture algebraically the knowledge 

S E q u i v a l e n t l y ,  e a c h  n x n m a t r i x  (i , j)--> uKi j is o f  r a n k  1. 
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that the outcome is the Kth ,  and it is here that I could easily be begging 
the question of nondestructiveness. So I will for clarity immediately display 
the immediate  result (14), then the decisive E'rP 'E ' r  step, then a clearer 
"answer"  in terms of  vectors v, and shunt justification of  E'rP'E'K to the 
Appendix. 

Theorem: 

It  ~ ~conj  (14) 
UKi j ~-- jtKZ.Ki~ Kj 

expresses nondestructiveness in terms of  B unit n-vectors zK~ and B complex 
AK. Conditions are given after the following derivation. 

Proof. The final (unnormalized) state of  sys&reg, after the K t h  outcome 
is known, is taken to be E'KP'E'r ,  where P '  is the state UPU adj after the 
U-motion:  for this collapse of  the state, see the Appendix.  Then the final 
state of  sys itself is proport ional  to the Landau trace or partial trace of  this, 
over the reg space 's  indices. Nondestructiveness,  by definition, demands 
that this final state of  sys itself be proport ional  to the K t h  acceptor 
aK; thus, LandauTrace(1 n | e'r Up | el U adj 1 n @ e k) oc aK expresses non- 
destructiveness. In components  and through (9), this is 

l conj ! 
1 m,e K C D  OrDsFPstel FG U wltG 1 w2e r lc  

(2C ~conj l" [ r rconj 
t 'KJ ~ i J j l  U iHmlCKH 

which distills to 

t t  
,,conj conj 

KmsPst~ Kjt OC UKijU Kim 

to be true for all states p. Temporar i ly  drop the spectator label K for clarity, 
and note that we then have the n x n matrix relation 

upuadJocuadJu for all densities p (15) 

Insert the (normalized) unit matrix for p into (15), then trace, to see 9 
that 

U U  adj = u a d j u  

This commutativity with the adjoint characterizes a normal  matrix: hence 
u is normal.  So the eigenspaces of  u are orthogonal. Accordingly, unitarily 
diagonalize u. 

Next,  insert an off-diagonal p into (15), and see that the left side, 
upu adj, therefore also has an off-diagonal part  connecting any two nonzero 
diagonal-u places. Yet the right side is diagonal. This discrepancy establishes 
that all but one element of  diagonalized u must vanish. So, diagonalized u 

9The alternative u = 0 is excluded by my demand that each quill ar have rank 1. 
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is some nonzero complex multiple of  projection on some unit n-vector z. t~ 
This gives the above formula, (14), for the original, prediagonalized 

u, when we restore the suppressed index K. QED 

Conditions on AK and on zKi follow equivalently from unitarity of  U 
or from (3): 

Substitution of  (14) into (10) gives 

~con j lx  12~cnnj~ 
~ ' K i Z ' K j  }r tK I ~ K i  /-'Km ~" aKmj 

i 

which simplifies, because each zKi for fixed K is a unit n-vector, to 

zconj[ It 2~ 
K j  I~tK Z.Km = agmj 

It is now best to absorb the 

la,  Iz j = 

Then 

(16) 

oonj - - (17) 
I.)Kj 1)Km - -  U K m  j 

and summing over K yields the unit matrix In, from (3) in the definition 
of "B-plex";  thus, 

~. conj 
O K j  1)Km : 1,,,j (18) 

K 

which is to say that the vKj are n orthonormal B-vectors. 
The conditions packed in the orthonormality of  v will presently be 

seen to be just enough to produce an answer free of  any further condition. 

Conditions. Thus, the conditions are simply that the vKj constitute n 
orthonormal B-vectors, or, more picturesquely, that they are the "first" n 
vectors of  a B-frame. ("Frame" is meant to signify orthonormality.) 

Corollary. Case B < n is empty. 

Brief Detour on the Corollary. Indeed, more than B orthonormal vectors 
in B-space is impossible; QED. Hence, our nondestructive topic does not 
exist for theorists confined to "questions," that is, to tests with only B = 2 
outcomes, except for the subcase B = n = 2. 

~~ AK factors mask any effect on the answer for u that normalization of the n-vectors z 
might have had, hence the renormalization [in (16)] of z to v causes no problem. The z 
normalization that thus gets "lost" is used only to shape the following argument. 
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(14) will be called (19) when rewritten to eliminate z in favor of  v; 
this is listed below, within an exhaustive statement of  the "answer," that 
is, a list of  conditions both necessary and sufficient to define a motion U 
which effects nondestructive measurement. 

The Answer, in Terms of a Schmidt Process in B-Space. 
How This is a New "onto" Theorem 

Thus, 

conj aK,,j = vKj vKm (17) 

and 

uKu = OK n o r m r  vKi/normr v~nJ/normr (19) 

which with the aid of  (11) and the unitarity of c gives 

UiDjl = cKDOK normK vKiv'~] '~ (20) 

where 

normK = ]vKp[ 2 

and where 

vrp is n orthonormal B-vectors (18) 

shows how to build the 1 sector of  U out of n arbitrary orthonorma] 
B-vectors v, out of  B arbitrary phase factors OK = exp(i~br), and out of  the 
arbitrary unitary twist or second B-frame c. 

Proof. Formula (17) follows from (19) and (10). Formula (19) is merely 
(14), transcribed to favor v. Hence, the conditions cited are indeed necessary~ 

The derivative nature of  (17) also refers the question of  sufficiency 
entirely to the question of  the consistency of (20). Specifically, that question 
is whether U so specified from some B-frame v freely given (and c and 
0K) is uni tary--hence is to be regarded a possible motion (see footnote 4)~ 

As the n columns numbered j l  of  U as given by (20) are identically 
orthonormal,  they are easily Schmidt-completed to a full U. Hence, the U's 
given by (20) do indeed extend to full unitary U's; QED necessity and 
sufficiency for the v a freely given B-frame, the & free phases, and a free 
twist or other B-frame c, to define a motion U. 
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So the U's cited do unitarily implement, as nondestructive tests, all 
those porcupines whose a r  are given by the vC~ formula (17). Having 
done with "necessary" and "sufficient," what is yet left? I wish to show 
that, as v runs over all possible B-frames, the a 's hit by (17) are all of  the 
porcupines; that (17) as a mapping is onto. 

Proof That (17) Is Onto, The form /3c~ for any one a K says only that 
that ar  has rank 1, which merely affirms that the porcupine property has 
been built in. The only remaining doubt stems from possibly restrictive 
interrelations between the aK for distinct K which might 
follow from our only condition on the vectors v, namely, the B-vector 
orthonormality 

conj 
VKj VKm = l jm (18)  

K 

but (18) merely demands [through (17)] that 

Y~ aKmj = l j,, (3) 
K 

which correlation between the a/c is part of defining "B-plex."  Hence, (18) 
is B-plectically identically met; QED onto. 

6. CLOSE RONDO: BACK TO DISTURBANCE AND BACK TO 
VON NEUMANN'S SCHEMA 

When are our nondestructive tests also nondisturbing? 

Case B = n 

The standard picture of the textbooks is borne out: If  initial state p is 
itself aK, then trace paK, the probability of the K th  outcome, is 1. These 
p are of  course the eigenstates of  any nondegenerate Dirac observable A 
whose eigenprojections are the a r  ; hence it is precisely eigenstates of  A 
that are not disturbed. (Disturbange of  the other states x was reviewed in 
the Introduction.) Repeated observation with such a test first casts any 
mixed state p into a state a t ,  then subsequently reports K-ness without 
further disturbance. 

The General Case, B >- n 

Here arbitrary initial p is also cast into state ax/trace aK whose ket 
(mod phase) is z r  = vr/IvKI, with probability 

trace pat: = t race p/3KO~ j 

= trace pZKZ~JtVK 12 

= t race pZKZ~ff j trace a K 
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But now even one of  the zK given initially has nonvanishing probability of  
being disturbed: The chance of  zK "scattering" to ZL is 

trace paL = trace[(aK/trace aK )aLl 

~adj . . . .  adj = trace ZK.~, K t~L~ L 

~adj~ ~adjl~, 2 =trace  .aKZ. K Z.LZ, L [w L 

= [(z lzL)121vd 2 

In particular, the chance that zK is undisturbed (mod phase) by such a 
measurement is only IrK [2= trace aK, less than 1, if the K th  acceptor aK is 
short. Such instability to scattering is of  course in conformity with Wigner's 
lemma. 1 

If  on the other hand aK is of  full trace 1, that aK is indeed orthogonal 
to all other aL'S, and is entirely apart from the crowding implicit in having 
more than n outcomes; this subcase can be separated out by first splitting 
our B-plex into sharp and 1-free parts (Lubkin, 1974a, 1979b). 

Overket 

We now apply our general nondestructive U to a general pure initial 
state of  the sort contemplated in (2), namely, to [x)[el), and find that the 
necessarily pure final ket obtained from unitary motion is, for the nonde- 
structive motions U, indeed a reasonable extension of  Neumann's  (2). 

In components on the basis ]b,) for sys and the basis [eK) for reg, 

]x)[el) = X~AIb,)IeA) 

where X~A = X i l a l .  The final sys&reg ket or "overket"  is then, in components,  

Then (20) gives 

or  

XID = UiDjAXjA = UiDj lX j  

! 
XiD = eKDO K normal i)Kil)KjcOnJxj 

' = normK zKiz~nJxj XiD CKDOK 

The analogy to (2) becomes clearer if the components are wrapped up 
again into whole kets. I use both (end brac)ket symbols to mark a sys&reg 

HWigner's lemma is stated in the last Q of the Introduction. 
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ket, thus, Iketname)); in this convention, we have 

conj Ix')) = x~olb,)leo) = c,,oleo)O,, no rm r  ZK, Ib,)zKj xj 

where all indices are dummies, or 

Ix')) =E oK normK(zKIx)lzK)le',,) 
K 

= Y oK nonnT,%,,)(vK Ix)lel,) 
K 

= Y'. OK(ZK IX)IVK)Ie~) (21) 
K 

where the notation [e~) for CKoleo) recalls (5), and where the B unit 
n-vectors zmlbi) are called IZK). 

In the traditional situation B = n, the n o r m r  are all 1, and only the 
phases OK distinguish (21) from the final overket of  (2); they signify the 
most general U imposing an extra and obvious final rephasing. The OK 
cannot be absorbed into the zK or the vK in the first two versions of  (21), 
as bra and ket rephasings cancel, but perhaps confusingly could have been 
absorbed in the third version, but only by breaking the positivity of my 
renormalizing in (16). 

When B > n, the results on transitions for repeated measurements 
already developed using traces are easily recovered from inner products 
with (21). The terms in the sum on K are orthogonal even though the IZK) 
are not, because the le~:) are. 

The probability PLK of  an L ~  K transition is (normK COSKL) 2, where 
COSKL = I<ZK IZL>I = COSL  is K-L symmetric, but since usually n o r m r  differs 
from normL (case B > n), PLK usually differs from PKL. This is not surprising, 
as L ~  K is, more completely, 

[ZL, e,)) --> IzK, e~)) 

and so is not simply related to the K ~ L transition, 

]ZK, el)) "-)IZL, e'L)) 

In a sequence of  similar measurements, we do not accept the final 
sys&reg ket Ix')) unchanged in going to the next measurement, but first reset 
reg to el. What happens when U hits an unreset ket [ZL, e'~)), for M not 
1, is not interesting, as the elements of  U that come up are those in the 
arbitrary Schmidt completion, outside the scope of  (14) and even of  (13); 
so to consider motion reversal would be pointless. Yet, in the case B = n, 
we do have PLK = PKL, in spite of  the dissociation from motion reversal. 
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7. CODA:  T H E R M A L  INITIALIZATION OF THE REGISTER 

What about having reg start in a mixed state? 
If  a nondestructive final state is a pure sys&reg ket, then there must 

be a garbage can (go) aside from sys&reg to accept the entropy. Discussing 
that would violate the minimal policy here of  measurement only through 
unitary" motion of  sys&reg. Yet the strict correlation between sys and reg 
finally can admit randomized phases between the outcome-indexed terms, 
hence can have entropy up to yon Neumann's  entropy of  measurement 

v N  = - ~ PK In PK 

Hence, that much entropy could perhaps be channeled internally. 
Indeed, v N  was the entropy of the noisy initial state used in Lubkin 

(1987) as solution to the problem of  generating the least entropy of  erasure 
in the writing of  the measurement's answer on a register. 

Nevertheless, in spite of  the suggestiveness of  this matching of entropies 
vN, it turns out to be impossible to devise a unitary motion that will work 
nondestructively for an entropic initial state of reg: 

No-Go Theorem. The initial state Yo of  reg must be pure for a test to 
work nondestructively. 

Proof. Suppose contrarily an impure Yo and a motion U of sys&reg 
leading to a nondestructive test with porcupine a whose K th  acceptor aK 
is VKV~ j. Diagonalize Yo, and let its constituent projections be the eL, 
L = 1, 2 , . . .  ; there are at least two terms, else Yo would have been pure. 

The effect of the U motion on the candidate ensemble Yo can be 
obtained by convexly combining its effect on starts with those separate eL. 
If for any such eL, the outcome K gave a final sys state not proportional 
to a t ,  then the convex combination would also not be proportional to aK, 
violating nondestructiveness. Thus, each contributing eL induces a non- 
destructive test with the Kth  acceptor aKL proportional to aK. Hence, we 
have (14) edited with L instead of  1, for each contributing eL in Yo, and 
(19) becomes 

UiKjL : OKL norm~:~ DKLi[gc~ 

where, however, the VKL dependence on L deals at most with the vector's 
length. 

Fixing j, L here selects a column from the components of the unitary 
matrix u, UiK~L [see (12)]. The columns j L  for fixed j and each contributing 
L are complex-proportional.  The columns are also unit nB-vectors, from 
unitarity. Dot products between proportional unit vectors have absolute 
value 1. Unitarity of u, however, demands zeros for products between 
distinct contributing L values, of which there are at least 2. That is 
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intolerable. Hence, no nondestructive motion U exists for the mixed start 
Yo of any reg. QED. 

Hence, a thermally quenched reg bars nondestructiveness--with no 
extra device. My use (Lubkin, 1987) of thermal prequenching for minimal 
loss of information in overwriting was indeed for a measurement assumed 
to be so strongly disciplining as to leave no entropy after the outcome is 
known, which resembles the present notion of nondestructiveness, but is 
in principle more general; sys could for example be annihilated, leaving 
only its mark on reg. Or one could use the present scheme after first forcing 
reg to el before all else; dethermalizing it! But that is not entropically 
optimal. It is doubtful, then, that the thermally quenched start can be made 
to work with mean entropic production limited to v N  each trial. I Cannot 
claim this "disproved," since argument here is limited to mechanisms within 
sys&reg's nB Hilbert dimensions. 

8. SIGNIFICANCE OF THE NONDESTRUCTIVE PRODUCTION 
OF STATES AS HEREIN DESCRIBED 

But Everybody Already Knows How to Produce Nonorthogonal States! 

Everybody already knows how to produce nonorthogonal states for 
something like MF, by a variety of arbitrary state-producing arrangements, 
e.g., by using nonperpendicular Polaroids on photons. Hence, the present 
result lies not in the production of orthogonal or nonorthogonal states in 
itself, but in the minimality of the tools used: Both nonorthogonal prepar- 
ation with B > n and orthogonal preparation with B = n tack onto sys only 
the one B-dimensional entity, reg. That is minimal, because a dial with B 
Wigner-stable settings does need B mutually orthogonal settings (see foot- 
note 11). 

If anything that can be engineered joins physics, then the ability to 
model any consistent pattern on a computer would incorporate anything 
noncontradictory; "anything goes" (save for possible finitary restriction). 
To block this, "physics" must be the art of telling "natural" apart from 
"artificial"! In this admittedly feeble light, the minimality of reg earns it 
the "natural" sticker. But is the construction in Lubkin (1974b), my support 
for all U's being possible motions, then, too broadly grammatical? 

APPENDIX 

Here we consider the collapse of the final state P' of sys&reg to the 
normalized Landau trace of ' ' ' as E r P E K the state of sys after the outcome 
read off reg is known to be the Kth, or relative the Kth outcome. 
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A1. Preliminary Algebra 

Let the final state at first be uncollapsed. That is just Up @ el U "dj here, 
but the point may as well be couched more generally, so call the uncollapsed 
state simply P ' .  

I shall read the collapsed state of  sys from the expectation value of  
the Dirac observable h On sys, while the outcome of  the e' test on reg is 
known to be the Kth.  

So the state is P~OD', and test is some cousin of  HK = h|  in 
components ,  of  HmOD = hoe~cD. The Dirac sys&reg observable HK has 
the expectation value 

where 

Trace P' HK = P~oDHKjDiC 

I ! 
= P i c j D h j i e K o c  

-= ,O Kijhji 

= trace pKh 

PKu = P~ooe~oc  (22) 

Lack of  involvement with the initial state allows us in this Appendix 
to diagonalize the final e~ basis. Accordingly, so as not to err when the e 
and e'  both enter, correct portage of  these results to the main text uses a 
basis-free notation. But here, we will also use 

e'~DC = IDK 1Kc 

which gives the more compact  version 

PKq = P~KjK (22) 

with no sum on K. This pK, however, fails to be a density matrix, because 
its trace is 

tK = PK~j = PIKiK (23) 

summed on i but not on K, whereas K must also be summed on to give a 
state's normalization, 1. The quantities just introduced through this 
unfocused algebra will nevertheless be useful below. 

A2. Ensembles 

Full, uncollapsed P '  provides a useful ensemble, in the style of  von 
Neumann,  on which we effect simultaneous measurement  of  the two com- 
muting Dirac observables H = h |  and E~: = l n |  
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Protocol 1. The answer for E ~  is 1 or 0. Throw away the H answer 
whenever E ~  comes out 0. But when E ~  comes out 1, do log the answer 
for H. 

This on the face of  it represents "the expectation of  h when the outcome 
of  e' is known to be the Kth , "  hence this protocol 1 is what is to be captured 
in formula (26) below. 

But consider first the more easily captured following protocol: 

Protocol 2. Record the H value when the E ~ value is 1 as before, but 
now record 0 when the E ~: value is 0. 

Then we do get as expectation value the sys&reg expectation of HK 
worked out in the preliminary algebra, 

expectation2 = Trace P'/-irk = trace pK h (24) 

since HK = HE'K, the ordinary product  of  H and E ~ ,  indeed does come 
out as the H or h value when E ~  is 1, and 0 when E ~  is 0. 

This expectation2 does not do for the desired protocol 1, because while 
the throwing away of  zero answers for /ark when E~: is 0 do not affect 
the accumulation in the numerator,  it does reduce the size-of-sample 
denominator  in an empirical determination of  an expectation value. 12 
Indeed, 

expectationl  = expectation2* (total trials/allowed trials) 

The count of allowed trials as compared to total trials is the expectation 
value of  E~: itself. That is Trace P '  E~  = tK [see (23)]. Hence, 

expectationl = Trace P'/ark * ( I /Trace  P '  E ~ )  

o r  

where 

= Trace P '  HK / tK 

expectationl = trace p~ h (25) 

is now properly normalized, to trace 1. Equations (26), (22), and (23) give 
us the state p~ for sys as an ensemble relative to knowledge that reg has 
outcome K, because it is p~ which is featured in the correct expectation (25). 

12The application of  this Appendix is to proportions culminating in (15), not to an equation. 
Hence, normalization is moot, and it may be objected that that is what is being examined. 
Discussion is nevertheless justified in order to allay doubts about a suspiciously unnormalized 
state E~P'E'K, as well as to round out "reduction of the wave packet." 

P'K = PK/ tK (26) 



Fiaai States 963 

Again, the final state is p~:, where 

P 'ro = P~rsK/ P'oKaK 

= L a n d a u  trace of  E K P E K '  ' ' normalized (26) 

But  this should also reduce to Everett 's (1957) prescription for a relative 

state, namely, to a partial inner product,  if  we go back from density matrices 
to kets. 

The encompassing state to be treated is P' .  The "observer"  reg relative 
to whom the partial inner product  is to be taken is in the state e~:, which 
is pure. Were P '  also pure, so that kets for both P '  and e~: exis ted-- let  
them be XiA and YA----the reduced ket x in Everett 's prescription would be 
the partial inner product  of  X with Y: 

x, = X,A Y ~ J  (27) 

giving as reduced density matrix 

_ _  c o n j  _ _  V v c ~ 1 7 6  r t 
PKij- -XIXj  --ZXiA--A ~"jC Yc=PiAjCeKCA 

which is the same as the unnormalized identically named expression for 
protocol 2 above, and is of  course to be upgraded to p~c~, as above, for 
protocol 1. (Indices A and C are dummies.)  

This argument  has treated P '  as pure, so as to admit  a representative 
vector X in ket space for being quite literal about "part ial  inner product ,"  
but we already have the same expressions PKO for protocol  2 and p~g for 
protocol 1, free of  restriction of  state P '  to purity. Thus, the discussion of  
E ~ P ' E ~ / t K  above, couched in Neumann ' s  language of ensembles, does 
extend Everett 's relative-state partial inner product  beyond purity of  the 
enveloping state p,.13 

A C K N O W L E D G M E N T  

I have been saved from the inadvertent specialization to e = e' by 
Thelma Lubkin's  criticism. 
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